eChook GPT Documentation
  • Welcome to the eChook nano documentation
  • System Overview
  • The eChook Nano Kit
    • Versions
  • Build Instructions (Kit V1.x)
    • Build Steps Photos
    • First Power On
  • Build Instructions (Kit V2+)
  • Programming the Arduino
    • Install Arduino IDE
    • Arduino Drivers
    • Download the eChook Arduino Code
    • Programming the Arduino
  • Setting up the Bluetooth
    • Pairing with a phone
  • Connecting the eChook to the Car
    • Power and Voltage
    • Current Sensor
    • Throttle Input
    • External Buttons and Brake
    • Temperature Sensors
    • Wheel and Motor RPM
    • PWM Output
  • Calibrating the eChook
    • Wheel Speed and Motor RPM
    • Temperature
    • Voltage
    • Current
  • Using the App
    • Pair eChook to Phone
    • Setting up the App
    • Logging Data
    • Lap Counting
  • Telemetry (Live Data)
    • eChook Live Data
    • Node-Red Integration
    • DIY Web Dashboard
  • Using the Data
  • Circuit Schematics
    • 12 and 24v Inputs
    • Temperature Inputs
    • Bluetooth Module
    • Throttle Input
    • Current Input
    • Button Inputs
    • RPM Inputs
    • PWM Output
    • Power Regulator
    • Expansion Port
  • All about the Arduino nano
    • The eChook nano Code
  • Bluetooth Communication
    • Bluetooth Packet Encoding
    • Bluetooth Packet Decoding
  • Experimental Section
    • GUI Calibration
  • eChook Accessories
  • DIY eChook
  • Spare Parts
  • Troubleshooting
  • Contributing
Powered by GitBook
On this page

Was this helpful?

  1. Circuit Schematics

RPM Inputs

PreviousButton InputsNextPWM Output

Last updated 6 years ago

Was this helpful?

The RPM Connector provides 5V and GND for the hall effect sensors, then takes two signals, one from each sensor.

The hall effect sensors act as switches. When no magnet is detected, there is no connection between the signal pin and ground. When a magnet is sensed, the signal pin connects to ground. To turn this into a signal readable by the arduino, we need to pull the signal leg up to 5V when there is no connection, and allow it to drop to 0V when the magnet is sensed. R16 and R17 are pull up resistors that do this. R18 and R19 are protection resistors to prevent too much current reaching the Arduino in the event of a wiring mistake.